CSC 108H: Introduction to Computer
Programming

Summer 2011

Marek Janicki

Administration

* Class is in BA1140 Next week.

* Midterms will be given out in the second break.
 The mean was a 238.8.

 Median was 31.

« Assignment 1 autotesting results have been mailed to
your cdf e-mails.

» | am aware that Assignment 2 was too difficult, and the
grading will reflect that.

* Assignment 3 comes out tomorrow or on the weekend.

July 7 2011

The Structure of Programming.

e At the most basic level there is Machine Code.
« We don't do this.

 Then we have lines of code in a programming
language.

 But often times we use the same code.
* Then we have functions on top of that.

* \WWe can reuse code, but often code is very use
specific.

 There are also built-in functions.

July 7 2011

The Structure of Programming.

e SO we can divide our code into Modules.

* This means we don't need to evaluate massive
amounts of code any time we need to get
something done.

* Modules have their own functions.
* Helps with separating programs.

* |n a similar way, we saw that types have
methods.

July 7 2011

Classes

* Python allows us to build our own types.
e These are called classes.

 \When we have a class, we can create
iInstances/objects of that class.

* Recall the difference between a type (str, int)
and a value ('this is a string’, 10).

* This is analogous to the difference between a
class and an object.

July 7 2011

Classes

* To make a class we just do:

cl ass O ass nane(object):
bl ock

 Cl ass is a keyword and obj ect is a type.

« Class names start with Capital letters by
convention.

* To create objects or instances of Class _name
we use:

X = C ass_nane()

July 7 2011

Class methods.

e So far our class objects can't do a whole lot.

 One way to make them more useful is to add methods to
class objects.

 We do this by putting them in the block of code under the
class name.

 But we want our methods to work on each individual class
object.

* le. when we call 'aaa’.isUpper() we want it to only work on
'‘aaa’ not on all strings.

 How can we get our method to refer to our class object
rather than to all classes?

July 7 2011

Class methods.

* To solve this issue we use the keyword sel f

« Say we have a class Patient that is meant to
store information about patients in a hospital.

* \We may want to update the patient's age.

e To do this we need a method set _age.

cl ass Patient(object):
def set age(self, age):
sel f.age = age

July 7 2011

Class methods.

* Note that these are methods, so that if we have
a patient p1 to set his age we use

pl.set age(10) and not
pl. set age(pl, 10)

» Self should always be the first parameter in a
method but it is passed for free when we call
the method.

July 7 2011

Class Constructors.

* There is also away to set class variables when
you construct class instances.

* The special method __init__ is called whenever
you try and construct an instance of an object.

cl ass Patient(object):
def 1nit_(self, nane, age):

sel f. nane = nane
sel f.age = age

« Calledby x = Patient(“Joey”, 10)

July 7 2011

Class methods: Special Methods.

 indicates that the method is a special
method.

e These are used to make our classes work more
like Python's built-in types.

 For example:

. str_

IS used when printing

e chp__ is used to allow boolean operations.
e add _is used to allow the + operator.

. | ter __ is used to allow your type to be used in

for loops.

July 7 2011

Classes - Encapsulation

* One of the big benefits of classes is that they
hide implementation details from the user.

* \We call this encapsulation.

* A well designed class has methods that allow
the user to get out all the information they need
out of it.

 This allows a user to concentrate on their code
rather than on your code.

* This also frees you to change the internal
implementation of the class.

July 7 2011

Class conventions.

e Class names start with upper case letters.

e Class methods and instances start with lower
case letters.

* Method definitions should have docstrings just
like function definitions.

» Classes should have docstrings just like
modules have docstrings that describe what the
class does.

July 7 2011

Break, the first.

July 7 2011

The Structure of Programming.

* \We want our programs to be both reusable and
extendable.

 Reusable means that other people can easily
take our code and use it for their problems.

» Extendable means that it's easy to modify our
code to handle new issues that come up.

e How do we resolve the tension between the
two?

July 7 2011

Classes - Inheritance

* WWe want a way to allow modifications to
existing code, that don't alter the ability of
existing code to run.

 One way we could do this is to write a new
class that copies the old class plus has some
new functions.

* This is a lot of work, especially if you decide to
change the old class down the road.

July 7 2011

Classes - Inheritance

 I[nstead we can use Inheritance.

e Classes are allowed to inherit methods and
variables from other classes.

e |f class A inherits from class B, then class B is
called the superclass, and class A the subclass.

 Classes inherit all of the methods and variables
In the superclass.

* One can overwrite or add new methods in the
subclass as appropriate.

July 7 2011

Classes — Inheritance

* The syntax for creating subclasses is:
« cl ass C ass_nane(Subcl ass _nane):
bl ock

* Note that this means our previous class is a
subclass of the class obj ect .

* If you define a method with the same name as
one Iin the superclass, you overwrite It.

July 7 2011

Classes - Inheritance

* Inheritance is a really powerful tool that is easy
to abuse.

* |Inheritance should be used to represent 'is-a’
relations.

* S0 a Surgery Patient is a type of Patient.
« Amammal is a type of animal.
» Aparty is a type of event.

* WWhen coming up on to a new problem, a
common first step is to think about class
structures and what objects you'll need.

July 7 2011

Break, the second

July 7 2011

Midterm Review

July 7 2011

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

